Paris traceroute: Measuring more accurate and complete paths

Brice Augustin Fabien Viger, Xavier Cuvellier, Matthieu Latapy, Clémence Magnien, Timur Friedman and Renata Teixeira

Laboratoire LIP6 – CNRS Université Pierre et Marie Curie – Paris 6

What's wrong with traceroute?

-bash-3.00\$ traceroute -n www.google.com 70.87204.1 8.323 ms 0.797 ms 1.066 ms 1 70.84.160.130 0.471 ms 0.262 ms * 2 70.85.127.109 0.299 ms 0.258 ms 0.256 ms 3 70.87.253.17 0.302 ms 0.206 ms * 4 208.172.139.129 0.569 ms 0.556 ms 5 0.480 ms 204.70.193.193 28.347 ms 204.70.192.49 0.694 ms * 6 208.172.97.170 28.380 ms 204.70.193.185 28.378 ms 208.172.97.170 28.374 ms 7 208.172.99.94 28.356 ms 208.172.108.6 28.483 ms 208.172.99.94 28.444 ms 8 72.14.238.57 30.792 ms 30.674 ms 208.172.108.6 28.437 ms 9 72.14.238.151 31.371 ms 72.14.238.57 30.653 ms 30.718 ms 10 66.249.95.194 40.722 ms 72.14.238.151 31.237 ms 66.249.95.194 40.870 ms 11 12 216,239,51,104 31,390 ms 72,14,238,190 40,858 ms 216,239,51,104 31,357 ms

What's wrong with traceroute?

UNIVERSITE DIERBE & MARIE CURIE

Findings

- Identified traceroute deficiencies on load balanced paths
 - Measured paths are **inaccurate** and **incomplete**
 - May diagnose an incorrect path
- Many routers have load balancing capabilities
 - Per-packet, per-flow, per-destination
- Built a new traceroute: Paris traceroute

Classic vs Paris traceroute

Traceroute under load balancing

Hard to diagnose aberrant paths

Inferred path:

Hard to diagnose unstable paths

Problems happen even under per-flow load balancing

- Traceroute uses the destination port as identifier
- Per-flow load balancers use the destination port as part of the flow identifier

Paris traceroute: Tracing a single path

- Solves the problem with per-flow load balancing
 - Packets have the same flow identifier
- Works with UDP, TCP and ICMP

Identifying the probes

Paris traceroute: Tracing all the paths

- Change the probing strategy
- At each hop:
 - Send packets with a different flow identifier
 - Send enough probes to enumerate all interfaces with a high degree of confidence
 - Classify load balancers: per-flow or per-packet

Interfaces enumeration

Steps:

- Interfaces after L?
- Suppose 2 interfaces
- Send 6 packets through L
- Responses from 2 interfaces
- Suppose actually 3 interfaces
- Send 5 more packets through L
- No third interface
- Stop probing

Probing overhead per hop

- Classic traceroute: 3 packets by default
- Paris traceroute: at least 6 packets to rule out load balancing

# interfaces	1	2	3	4	5	6	 15	16
# packets	6	11	16	21	27	33	 90	96

13

Up to 96 probes (up to 16 responding interfaces in our traces)

Paris traceroute output

Load balancing is common

Measurements from 15 sources to 70,000 destinations

- Paths affected by load balancing:
 - 39% by per-flow
 - 2% by per-packet
 - 70% by per-destination
- Many Tier-1s use load balancing

Load balancing causes anomalies

From our LIP6 vantage point:

- Diamonds appear in 30% of the destinations
 - Paris traceroute removes 10,662 from 19,159 (56%)
- Loops appear in 4.5% of the measured routes
 - Paris traceroute removes 5,047 from 5,795 (87%)
- Cycles appear in 0.25% of the measured routes
 - Paris traceroute removes 3,886 from 5,674 (68%)

16

- Other causes
 - Routing changes
 - NAT boxes
 - Buggy routers
 - Per-packet load balancing

Laboratoire d'Informatique de Paris 6

Load-balanced paths

Generally short, narrow and symmetric

- Some are extremely long
 - More than 10 hops
- Some others are very wide
 - Up to 16 responding interfaces
- Parallel paths with different hop counts

Conclusion

- Vast deployment of load balancing
- Classic traceroute discovers inaccurate and incomplete paths
- Paris traceroute reports more accurate and complete paths

More information

www.paris-traceroute.net

Perspectives

- Measure "native path diversity" in the internet (submitted to IMC2007)
- Handle some probing subtleties
- Simple extensions to detect:
 - Per-destination load balancing
 - Uneven load balancing
- Return path diversity

Backup slides/making of

Load balancer classification

- Suppose per-packet
- Send 6 identical packets
- **Responses from 2 interfaces**

What's wrong with traceroute?

Introduction

- Traceroute measures a path between two hosts in an IP network
- It is widely used by:
 - Network operators
 - Networking researchers
 - Geeks/Computer enthusiasts

Hard to diagnose aberrant paths

Inferred path:

Hard to diagnose unstable paths

