
HAProxy 1.5 and beyond

FRnOG 22 - 2014/04/04

Willy Tarreau <willy@haproxy.com>

HAProxy / ALOHA R&D
http://www.haproxy.com/

http://www.haproxy.com/
mailto:willy@haproxy.com
http://www.haproxy.com/


Quick history - major dates

Project started in 2000 as a hack to rewrite HTTP headers during a benchmark

2001/12/16 : version 1.0 : deployed in emergency to off-load a failing load balancer

2002/03/10 : version 1.1.0 : basic LB, checks

2003/09/20 : version 1.1.23 with English Documentation marks the real take-off

2003/11/09 : version 1.2.0 : IPv6, beginning of performance improvements

2004/12/26 : version 1.2.3 : first external contrib (appsession)

2006/03/19 : version 1.2.10 : first use in a commercial product (ALOHA v1.0)

2006/06/29 : version 1.3.0 : focus on flexibility (frontends/backends)

2009/06/09 : start of 1.4-dev branch : new development model with stable/dev branches

2010/02/26 : version 1.4.0 : much better HTTP compliance, content analysis, ...

2010/05/23 : start of 1.5-dev branch



Change of goals over time

Initially, focused on simplicity (was a tool subject to quick and dirty updates).

Then focused on CPU and memory savings for mainstream OSes and hardware (Solaris 2.6 on

UltraSparc 170 MHz, Linux 2.2 on Pentium2 450, with up to 128 MB of RAM).

Focused on reliability when starting to be used in production in a large bank

Focused on connection scalability as the usage grew

Focused on dealing with large configurations as adoptions increased

Started to focus on maintainability as critical sites adopted it

Changed the development model to adopt devel and stable branches (thanks Git)

Focused on network bandwidth as large sites adopted it (TCP splicing for 10+ Gbps)

Focused on modularity as features started to grow and to share code

Current focus is on ability to contribute/debug/audit to scale the project team



Goals which have not changed

Reliability above anything else.

When a user asks for a wrong feature, he has real needs that must be addressed (eg: leastconn,

server weight, SSL, compression, keep-alive, ...)

Long-term maintenance (1.3 still supported, 1.1 still alive in field)

No config breakage, guide user through warnings and advices instead (1.5 loads 1.1 configs)



Current state of affairs

1.5-dev22 released on 2014/02/16.

1.5-final expected "soon" ("soon" = "when it's ready")

1.4 currently is the mostly deployed version in numbers of sites

1.5-dev currently is the version deployed on the largest sites.

Some sites using 1.4 have already replaced stunnel with 1.5-dev on the front

⇒ 1.5-dev still needs to be stable enough because large sites rely on it today.



Why migrate from 1.4 to 1.5

SSL : getting rid of Stunnel

Native OpenSSL inclusion, all SSL info available

Client and Server side

Supports SNI, NPN, ALPN

Multi-hosting, wildcards and crt-list

Note: thanks to Bumptech for the immense help with Stud!

End-to-end HTTP Keep-Alive (static farms, NTLM)

IPv6 : supported everywhere (server, ACLs, ...)

HTTP Compression



Why migrate from 1.4 to 1.5 (cont'd)

PROXY protocol : now adopted by many common products :

PROXY TCP4 192.168.0.1 192.168.0.11 56324 443\r\n
GET / HTTP/1.1\r\n
Host: 192.168.0.11\r\n
\r\n

Client-side : haproxy, stud, stunnel, exaproxy, ELB

Server-side : haproxy, stud, postfix, exim, nginx, varnish (in progress)

More rulesets:

tcp-request connection,

tcp-response,

http-response

More actions:

HTTP: add-header, set-header, redirect, tarpit

TCP: set-nice, set-log-level, set-tos, set-mark, close, expect-proxy, track-*



Why migrate from 1.4 to 1.5 (cont'd)

Sample extraction from everything available (address, payload, cookie count, date, env, ...)

Pipelined sample processing via various converters (eg: "hdr(host),lower,map(to_cust.map)")

ACLs can use any match method with any input sample

Maps and dynamic ACLs updatable from the CLI

Stick-tables and counters : track usage stats for any given key :

cumulated/concurrent connections, connection rate

total bytes in/out, in/out byte rates

total HTTP requests, HTTP errors, HTTP req rate, error rate



Why migrate from 1.4 to 1.5 (cont'd)

Dynamic strings made from samples, usable at many places :

Custom log format

Custom unique-id insertion

HTTP header manipulation

Redirects

Improved health checks :

All are SSL-compatible

Scriptable TCP checks

Check agent

Redis, PgSQL



Why migrate from 1.4 to 1.5 (cont'd)

Many actions on the CLI :

frontend: enable/disable/shutdown

table/acl/map : add/del/show/search/clear entries

checks: enable/disable

limits: set maxconn, rate-limit on many settings

Programmable actions on server state transition (on-marked-down...)

Environment variables usable in all addresses

More tunables (header counts, cookie length, ...)

Configurable hash algorithms

Configuration scalability to tens of thousands of backends



Why migrate from 1.4 to 1.5 (cont'd)

Platform-specific features :

IPv6 transparent binding (Linux)

TCP Fast Open (Linux)

cpu-map (Linux)

tproxy (FreeBSD/OpenBSD)

PCRE Jit



Focus for 1.6

Config syntax update / removal of obsolete features (eg: reqsetbe)

better multi-process / multi-thread integration

needed to maximize SSL & compression performance

requires better stats handling

health check synchronization

stick-table sharing ?

RAM-based small objects cache

DNS resolving on-the-fly / checks

HTTP/2 gatewaying to 1.x



Focus for 1.6 (cont'd)

Stateless gzip compression

SSL : shared cache, CyaSSL

Improved POST/body processing

save / restore check states across reloads

"wait on resource"

dynamic buffer allocation

multi-level traffic shaping

More core developers for better scalability

More: see ROADMAP file!



Commercial extensions to come by 2014

Browser fingerprinting

⇒ differenciate a real browser from a bot

⇒ avoid blocking search engines scraping your site

Bot Net stopper

⇒ prevent botnets from hammering your site

APT protection

⇒ don't let attackers abuse HTTP to wake up backdoors or bypass filtering

DDoS mitigation

⇒ 20 Gbps stateful line-rate software-only filter blocks invalid packets

⇒ System's network stack handles the TCP validation

⇒ HAProxy handles the HTTP validation and abuse prevention

... and more by the end of the year



Thanks!

Questions ?


