
+

1

Kyber
Interactive Streaming

(near) Real Time Video and Controls streaming

FRnOG 39

2

Jean-Baptiste Kempf

Resume of My Video Life
● VideoLAN: being working on the VideoLAN project for 17 years,

president of the VideoLAN NPO since its creation (2008)
Doing most of the non-developer tasks of VideoLAN

● VLC: Active developer since 2006, notably on GUI, Windows,
Android ports, codecs and demuxers, packaging and releases

● FFmpeg: Active community member and peacekeeper of
FFmpeg. De facto involved in releases and roadmaps.

● Shadow: ex-CTO of Cloud Gaming/Desktop company

● Technical Consultant: Video startups, scaleups and e-Commerce
business

Lower Latency

2

Lower Latency Streaming

We're talking about encoded latency, else we would talk in lines :)

5s 1s

Low Latency

Ultra Low
Latency

Mega Ultra Low
Latency (WebRTC)

Hyper Ultra
Low Latency ??

100
ms

Adaptive
Streaming

60 s 10 ms10 s 1 s

Near Real
Time Latency

4

Why do we need lower latency?
Safety & CriticalInteractivity

Robots & Drones

Robots, Drones
AR Supervision

Cars?

Remote Desktop

VM / VDI / DaaS
Cloud Gaming
Cloud Desktop

Remote Monitor

Virtual Monitor
SlingBox

Industrial Supervision

App Streaming

Remote Video Production
Trial / Demo of Apps

Visual Cloud Apps

2

+

Watizit?

Kyber

Kyber

Open Source Real Time Control of
Machines

Solution
SDK

Client, Server and Networking stack
Streaming video, audio, subtitles unidir
Streaming inputs bidirectionally
Modular SDK and application
Quic protocol & WebRTC

Multi-platform Client (+ Web)
Multiple platforms for the Servers

All Codecs (H.264, HEVC, VP9, AV1)

Multiple Hardware & Software Encoders
Based on VLC and FFmpeg

Demo

https://docs.google.com/file/d/1iI9SvLVHjwLT5ATUtVeGsFhVpW-1nx4L/preview

Linux Server

How does it work?

11

Video Input Network

Features

Audio-Video Server based on FFmpeg
libraries, through txproto

Pushed-based Streaming server,
graph-based and multi-threaded per node
Video Server can composite GPU overlays

Player based on libVLC, tuned for
0-latency (push-based approach)

Video Codecs tested: H.264, HEVC, AV1, VP9

Audio Codecs tested: PCM, Flac, Opus

Hardware and Software encoders

4:2:0 -> 4:4:4 upsampling on client

New Input Server written in Rust
from scratch

Push-based Input streaming
server, graph-based, able to filter
and merge inputs

I/O Support:
Keyboard, Mouse (+Cursor),
Gamepads (+Rumble), Copy-Paste,
File-Transfer, USB/IP

Virtual Video, Mouse, Keyboard
and Gamepad Drivers

Cross-Platform, Client = Server

Multiplexer Server written in Rust from
scratch

Multi Protocol: Quic and WebTransport

Opens only one port (TCP+UDP)

TLS and Security handled at connection

Multi-user support (Main, Student)

Selectable features (audio, video,
inputs)

Input latency is independent from
Video latency

Separate process

Measures
Desktop @ 60 Hz
 libVLC H.264: ~16ms - 1 frame

Desktop @ 120 Hz
 libVLC H.264: ~12ms - 1 ½ frames
 libVLC HEVC: ~12ms - 1 ½ frames

Desktop @ 240 Hz
 libVLC HEVC: ~10ms - ~2 ½ frames
 libVLC H.264: ~10ms - ~2 ½ frames

Web @ 60 Hz
 Kyber H.264 Soft: ~33ms - 2 frames
 Kyber HEVC Hard: ~33ms - 2 frames

Web @ 120 Hz
 Kyber HEVC Hard: ~16ms - ~2 frames

 Kyber H.264 Soft: ~24ms - ~3 frames

We can do better!

Extra Low

We can do better!

https://docs.google.com/file/d/1-FhkfCzpBCL8hKLXBJYGkX1juM3xClNc/preview

Reliable: sends each channel on one QUIC/WT stream

GOPstream: 1 QUIC/WT stream per GoP

Unreliable:
Video Packets are sent in DataGrams mode
Config and Control packets are always sent in reliable
streams

Unreliable_fec:
Use of FEC (RaptorQ) to recover info without needing
retransmissions when loss of packets

Protocol

Multiple protocols supported by the muxer

Big focus on Quic, because TLS, Uni-Socket,
Multi-Stream, Bi-Directional and Datagrams

Audio / Video data can use Datagrams
Inputs are reliable and Bi-Directional

Use of WebTransport in very similar way than
Quic, including DataGrams inside WebBrowser

Quic / WT Multiple Modes

Unreliable Protocol
Channels

One connection with multiple channels, similar to MoQ tracks

Request to Server to subscribe to the right channels (channel_id)

Stream vs Datagram

Some channels are either on DataGram or Stream mode

One channel is composed of multiple Streams or multiple
Datagrams

Video can be datagrams and Inputs are always BiDi streams

Groups

Packets are grouped in groups for Media, to keep config (SPS/PPS) +
data together

Unreliable Protocol + FEC
FEC

Use of RaptorQ (for now) but other schemes are possible

RaptorQ source symbols of size configured to maximize the max Quic Datagram size.

Hopefully, the RaptorQ encoded symbols are going on their own UDP datagrams

All the desktop Rust code is running in the web
browser using Webassembly with same codebase

Notably Muxer and Input Server/Client

Video Decoding is done through WebCodec, in
Rust/Wasm

Rendering is done through a Canvas
Compositing time is controlled by the app

Audio is done through WebCodec

The Web version is using, in Rust/Wasm the same
codebase and the same protocol

WebTransport instead of Quic

FEC running in Wasm

Video Decoding can also be done through
VLC.wasm

Web Version

Wasm

WebTransport

WebCodec

VLC.wasm

No WebRTC :)

+

Do you have any questions?
jb@videolan.org

kyber.media

Thanks

+

