

eBPF in modern networks

FRNOG 41 Meeting, Paris 2025

CUNNESS SQ

Internal G-Core Labs SA

Meet you presenter

Andrey Slastenov

- Security Product Manager at Gcore
- 25 years in telecom industry and security
- A wide range of experiences: routing, MPLS, forensic investigations, conducting security trainings, working on DDoS protection product
- CCIE #19983

Gcore's Evolution and Challenges

Gcore at glance

DDoS attacks key trends and insights

DDoS attacks significant growth by 56% YoY

Attacks peak increased by 18%

Shaping DDoS Solutions: From Basic to Proprietary

Local mitigation options: RTBH & Flow-spec

Both options should be supported by service providers.

Distributed & resilient mitigation

Distributed servers, each comes with DDoS protection

Heavy network applications on the same nodes

Closer to client end-points (and DDoS generators)

Scalable and Resilent

Technical Choices: DPDK vs and eBPF

Native vs DPDK vs EBPF Filtering

Native Linux Filtering (e.g., iptables/nftables)	DPDK	eBPF
Pros:	Pros:	Pros:
Simple to use with familiar tools	Extremely high performance	High performance
		 Integrated into the Linux kernel, easier to deploy alongside existing tools
Cons:	Cons:	
		Cons:
 Much slower (e.g., 1-2 Mpps) due to full network stack processing and context 	 Requires dedicated CPU cores pegged at 100%, 	Slower than DPDK
switching.	reducing resource efficiency.	Limited adoption at that moment
	Complex setup	

First eBPF Filtering Implementation & Results

Packet Size	Filtered		CPU	Line Rate		Efficiency
	Mpps	Gbps		Mpps	Gbps	
1500	31	383	12%	31	383	100%
512	85	349	52%	85	349	100%
256	144	294	92%	162	340	89%

- 3rd Gen Intel Xeon Scalable processors. Intel® Xeon® Gold processors deliver improved four socket performance, built-in workload acceleration and advanced security technologies for cloud and network workloads.
- 100GbE Intel Ethernet 800 Series Network Adapters. These offer innovative and versatile capabilities that optimize high-performance server workloads with support for up to 100GbE for bandwidth-intensive workloads.
- 2 x Intel Xeon 6348 + 4 x 100Gbps x Intel E810

GCORE

Advanced Filtering Innovations

Enhancing Flexibility with Hyperscan

Packet Parsers

- Manually written filters
- Programing work

Regular expressions (regex)

- Less time to create filters
- Flexible approach
- Efficient packet processing

Usage: Reaction to attacks

Block DDoS attacks by identified pattern

Usage: Application-Level Protection

Application traffic have a strict structure that can be described using regular expressions

GCORE

Regex + eBPF Performance

Scenario 1. REGEX enable, not match on the pattern, verdict XDP_DROP

Packet Size	Filtered		CPU	Line Rate		Efficiency
	Mpps	Gbps		Mpps	Gbps	
1500	31	383	25%	31	383	100%
512	85	349	65%	85	349	100%
256	118	242	95%	162	340	73%

Scenario 2. REGEX enable, match on the pattern, verdict XDP_TX

Packet Size	Filtered		CPU	Line Rate		Efficiency
	Mpps	Gbps		Mpps	Gbps	
1500	31	383	12%	31	383	100%
512	85	349	52%	85	349	100%
256	94	194	94%	162	340	58%

https://github.com/G-Core/linux-regex-module

Anycast/GRE Super Transit

GRE is unidirectional

With eBPF, we can easily add a GRE header

We can spoof the source IP address of tunnel

Wrap-up

Scalability for Modern DDoS: Protecting against today's attacks requires handling millions of packets per second and terabits of traffic through a distributed approach.

Tech-Driven Evolution: Early mitigation challenges paved the way for advanced filtering, using eBPF, Hyperscan, and vendor-neutral strategies for flexibility and speed.

Global Optimization: Anycast, GRE tunneling, tackle unidirectional traffic and ensure efficient load balancing across networks.

The future of DDoS protection

Increasing sophistication of detection methods

Al integration

Focus on available capacity

Distributed architecture

Thank you Stay safe with Gcore

gcore.com

andrey.slastenov@gcore.com

© 2025 Gcore