Centipede-RTK & Millipede Centimeter-Level Outdoor Geolocation

Pierre Beyssac Eriomem.net Frnog41 – Paris -- 28 March 2025

GNSS frequency bands

https://www.agrotic.org/wp-content/uploads/ 2019/02/2019-04-23-AgroTic-Geolocalisation-CNES-VP.pdf

Terminology (1): GPS, GNSS ?

GNSS = Global navigation satellite systems

- \rightarrow
- GPS (USA)
- Galileo (EU)
- BeiDu (China)
- Glonass (Russia)

Terminoloy (2) : free OS?

Free OS <=> Linux

- « Is it running on Linux? »
- « Is it running on a free/libre/FOSS Unix system? »
- BSD? Is it a new Linux distribution?
- Berkeley Software Distribution (1977-)

Tropospheric and ionospheric delays

https://cours-fad-public.ensg.eu/pluginfile.php/1501/mod_resource/content/1/gnss.pdf

Precision positioning technologies

https://www.agrotic.org/wp-content/uploads/2019/02/2019-04-23-AgroTic-Geolocalisation-CNES-VP.pdf

Open-closed standards

Radio Technical Commission for Maritime Services

NTRIP1, NTRIP2

- « Networked Transport of RTCM via Internet Protocol »
- Ntrip1: roughly based on ICECAST, itself roughly based on HTTP 0.9
- Ntrip2: complies with HTTP 1.1
 - Can cross a http proxy \rightarrow easier handling of https
- Many broken/half cooked client or server implementations
- Transparent: can stream anything, proprietary packets, audio or even video.

Real-time kinematics

- Absolute positioning
- Relative positioning
- Needs a reference base
- « rovers »

- Local base for local deployment
 - Radio link
 - Internet access for the base + mobile data for the rover
- How about we share the base streams?
 - => Centipede

Basic GNSS reception

Adding local corrections

Distributing source streams

Centipede bases over time

Centipede bases by owner type

Type of installer ③

Centipede clients

Clients

Base monitoring

- Base position checks
- Used and archived by RENAG (French Réseau National GNSS permanent)

Rénag

REseau NAtional GNSS permanent - doi:10.15778/resif.rg

- GNSS/USB module: Drotek, France
- GNSS/USB chip: u-blox, Switzerland
- Chip: STM32, France

RTK, what for?

 - C'est un GPS d'appartement. Ça vous indique à 2 millimètres près où sont les différentes pièces et comment y aller.

Sidewalk surfaces

=> locate telecom cables and assets easily

=> kiss « alerte pelleteuz » good bye?

AlertePelleteuse @AlertePelleteuz Voussuit

La pelleteuse, le meilleur ami des réseaux de télécommunication.

◎ Sur tes fourreaux ② Naissance le 1 janvier 🖾 A rejoint X en mars 2012

IPv6? (Philippe's idea)

- 31 bits for latitude, resolution 11,1 mm
- 32 bits for longitude, resolution 7.3 mm (at 48.87° latitude)

Here = (48.8710098, 2.3309497) Latitude 488710098 \rightarrow 1d211fd2 Longitude 23390497 \rightarrow 163acb9

2001:db8::1d21:1fd2:0163:acb9

RTK at high speed (TGV Est)

Bluetooth GNSS 🌼 🔅				
C	* onnect	C RTK/NTRIP		
GN Lat: Lon:	ISS Devic	e read stats 48,88 2,67	s 36969 71467)4 79
Time from GN Ellipsoidal Hei Orthometric (I Geoidal Heigh Fix status: Fix quality: UBLOX Fix Typ UBLOX XY Acc UBLOX Z Accu HDOP: Course:	ISS: ight: MSL) Heigh t: curacy(m): uracy(m):	11:0 nt:	2:49+00: 99 53 46 ACTI R 0.0 0.0 0.0 0.2 25	00 ,61 ,38 ,23 VE TK D3 016 019 .69
N Sats used T N Galileo in us N GPS in use/ N GLONASS ir N BeiDou in us N QZSS in use	OTAL: se/view: view: use/view: se/view: e/view:		6 9 / 4 6 0	25 / 9 13 / 9 / 6 / 0
Location sent Alt type used:	to Android	0.490 S	econds a ellipsoi	igo dal
Total GGA Cou Total RMC Co Current log fo Current log na Current log siz	unt: unt: Ider: me: ze (MB):		2 2 No da No da No da	22 23 ata ata ata

Precise speed measurement

 $\Delta d = \Delta p_2 + \Delta p_1$

Uncertainty on speed, example at 100 km/h (= 27.8 m/s)

Standard GNSS precision $\sim 2x5 \text{ m} = \dots$

- 1 s interval: 36 % uncertainty
- 10 s interval: 3.6 % uncertainty

RTK precision $\sim 2x2$ cm = ...

- 1 s interval: 0.14 %
- 10 s interval: 0.014 %

Uncertainty on time can be neglected (under 1 ppm)

Millipede

- V/NEAR base
- Json API, YAML configuration
- TLS supported
- Proxy and « on-demand » features to include third-party networks
- IPv6 and IPv4 support (\rightarrow 129k connections possible)
- Low memory and CPU footprint: could run on a Raspi for personal use (NEAR proxy)

V/NEAR

- Based on rover-announced geolocalization to the caster
 - \$G*GGA lines (NMEA)
- Caster sends the stream of the nearest known base
- Rover can cross 1000s of kilometers while staying with mostlycentimetric precision, switching from base to base

- C
- FreeBSD or Linux
- Event-driven with libevent
 - => less state per session: ~600 bytes instead of 250 KB => less memory used
- Json API, YAML configuration
- TLS supported
- Experimental threaded version (workers) for multicore CPUs
- Quality assurance:
 - regression tests
 - valgrind for memory leaks & thread contention debugging

Source code on github (BSD license)

🕮 README 🛛 🕸 BSD-3-Clause license

' :≡

Millipede 0.8

Millipede is a high-performance NTRIP caster written in C for the <u>CentipedeRTK</u> project, a network of <u>RTK</u> bases based in France (see <u>https://centipede.fr</u>).

Millipede uses libevent2 for minimal memory footprint.

It can easily handle tens of thousands of NTRIP sessions on a minimal server.

Currently runs on FreeBSD.

Features:

https://github.com/pbeyssac/millipede-caster

18 March 2025

- Deployed on crtk.net:2101 (caster.centipede.fr:2101)
- From ~2000 connections with the former caster software (overloaded) to over 4000 and counting

On 3000 connections:

- Memory: about 60-70 MB / 30-40 MB resident
- CPU: ~15% monothread = 1 core used

Clients over time

Next?

- Now hosted by pch.net
- Anycast service, perfect fit
 - Lower latency between RTCM sources (bases) and rovers
 - vs DNS: NTRIP benefits from lower latency from sources in the same region
 - Transparent failover for NTRIP clients
 - Simplify rover configuration
- Scaling to 10k international clients in 3 years
- RTCM filtering for low-bandwidth clients?

Thanks!

Web site: centipede-rtk.org

Le Reseau Centipede RTK

Systèmes de référence

Elements du réseau

Fabriquer une base RTK

Eabriquer un Rover RTK

Rover sur PC windows ou

Analyse qualité réceptio GNSS

Centipède & Matériels

propriétaires

Autres Rover RTK

Applications pour smartphone

FAO

Linux

PPK

Connexion au caster Le GNSS RTK c'est quoi CentipedeRTK

Carte du réseau

http://crtk.net:2101

Aide technique:

fil de discussion Telegram Forum

carte ci-dessous présente l'étendue actuelle du réseau.

Caster: crtk.net:2101

Bluesky: @pierreb.bsky.social

Fediverse: @pb@mast.eu.org

A Short History of PCH

Started building IXPs in 1994 Started anycasting TLD nameservice globally in 1997 Anycasted the first root nameservice in 2000 Began providing services over IPv6 in 2001 Built the INOC-DBA infrastructure protection hotline in 2002 Became fully IPv4/IPv6 dual-stack in 2009 Started providing FIPS 140-2 L4 DNSSEC signing in 2011

- Deployed world's largest protective recursive nameserver in 2017

PCH's Involvement with the Project

Host and anycast NTRIP caster network globally Deploy RTK ground reference stations globally Port all software components to RISC-V Develop 2nd-gen reference station hardware **Develop 3rd-gen reference station hardware**

PCH's Involvement with the Project

Host and anycast NTRIP caster network globally Deploy RTK ground reference stations globally Port all software components to RISC-V Develop 2nd-gen reference station hardware **Develop 3rd-gen reference station hardware**

- ✓ Started

- ✓ Done
- Near completion
- × Just starting

NTRIP casters in 330 IXPs in 136 countries

Generation Two

Generation Two

Generation Three Hardwired

Generation Two

Generation Three Hardwired

Generation Three Standalone

First-Generation Hardware

Second-Generation Hardware

