Measuring and Analyzing Traffic with JUNOS

FRnOG 12 – Paris 30/5/2008

Bruno De Troch
Consulting Systems Engineer IP/MPLS EMEA
Agenda

- **Introduction**
- **Traditional Traffic Analysis with JUNOS**
 - Collection of measurements
 - Local handling of measurement data
 - Exporting of measurement data
- **Specialized Applications on top of JUNOS**
 - Partner Solution Development Platform (PSDP)
 - Applicability of PSDP for Traffic Analysis
Introduction

- **Measurements are important**
 - Measuring = knowing
 - Final goals might differ
 - Traffic Matrix Estimations
 - Network Topology Optimization
 - Billing
 - Peering Reconsiderations
 - ...

- **But LESS important than forwarding**
 - Should be absolutely non-destructive
 - Should also not cause additional delay or jitter
 - Should also not impact other services
Collection of measurements - 1

- Traffic information collected at Input or Output
 - Interface Statistics
 - Queue Statistics
 - Firewall (ACL) Counters*
 - ...

*Implemented at Forwarding
Collection of measurements - 2

- Traffic information collected during Forwarding
 - Sampling
 - Mirroring
 - Source/Destination Class Usage (SCU/DCU)
 - MPLS LSP Statistics

1:1000 – copy of header
Copy of packet
Src/Dst Attribute X = Class X – Count C_X
Nexthop LSP Y – Count C_Y
Local handling of measurement data - 1

- Simple handling of the data
 - With native storage
 - Examples: I/O Statistics, SCU/DCU, Filter Counters
 - In various registers, variables, memory locations …
 - Typically done on PFE with (bulk) transfer to RE*
 - Without storage
 - Example: Mirroring
 - No local storage
 - PFE only activity

* RE = Routing Engine (Control Plane)
PFE = Packet Forwarding Engine (Forwarding Plane)
Local handling of measurement data - 2

- Advanced handling of the data
 - Sampling Data Files
 - Example: Sampling
 - (Aggregated) Header information
 - By default on RE
 - Can be done within PFE (MS-PIC) for better scaling*
 - Accounting Profiles
 - Examples: I/O Statistics, Filter Counters, SCU/DCU
 - Periodical storage in user configurable file
 - MPLS Statistics File
 - Example: Per LSP Statistics
 - Periodical storage in user configurable file

* MS-PIC = MultiServices Physical Interface Card
Exporting of measurement data

- Through human user interface
 - CLI or GUI

- Towards server
 - SNMP
 - XML
 - FTP
 - Triggered by script (running locally or on server)
 - Accounting Profiles
 - User configurable data exchange parameters for stored files
 - NetFlow
 - v5, v8 and/or v9
Need more choices?

- The JUNOS Traffic Analysis toolset
 - Is very flexible and scalable
 - Allows for many different choices and combinations
 - …

- But what if you need more or something else?
 - Different data fields to be collected
 - Inter-router cooperation
 - Interoperability with non-standard applications
 - …

- Then Juniper’s New PSDP might be the answer
Partner Solution Development Platform (PSDP)

- Enables licensed partners (including customers) to build applications on JUNOS software
 - 3rd party developed apps can run on or integrate with JUNOS
 - Accelerates innovation for the delivery of revenue-generating services and improved operations

- Powerful set of resources includes software development kit (SDK)
 - Intelligent and secure interfaces to JUNOS routing and service functions
How the PSDP Works

Routing Engine (RE-SDK)
- Routing and control functions
- Slow path packet processing
- User interface extension

Partner Solution Development Platform
- Adapts applications to run in JUNOS
- Certificate used to sign apps
- Admin controls activated apps

MultiService PIC SDK (MP-SDK)
- Raw packet processing framework
- Very efficient and scalable
Development Benefits of JUNOS Software

- **One Code Base**
 - Single implementation to build upon
 - Mbps-Tbps platform range

- **One Release Line**
 - Each release is a superset of prior
 - Readily adapted forward/backward compatibility
 - Predictable schedule of development

- **One Modular Architecture**
 - Functional separation to protect base software and the PSDP applications
 - Well-defined, intelligent interfaces to specific routing and services functions
Applicability of PSDP for Traffic Analysis

- Develop specialized collector logic running on MS-PIC
- Develop optimized signaling protocol running on RE
Summary

- JUNOS supports the relevant standards for traditional collection and analysis of traffic data.
- Customers requiring more sophisticated mechanisms can now extend JUNOS’ capabilities with their own developments.
Questions? Comments?

- Can be now in French or English
- Or by email to bdetroch@juniper.net
Additional Details

- SCU/DCU
- Accounting Profiles
- XML
- PSDP Development
SCU/DCU Details

- Destination Class A from so-0/1/0 to 172.23.0.0/16 prefixes
- Results stored in SNMP MIB on the router
- DCU applied to inbound interface and destination IP address
- Billing software can apply different tariffs per destination class

1. Source
2. M-Series Router
3. Switch
4. Server
5. Access Router
6. Customer
Accounting Profiles

- Reliable collection & transfer of billing data
 - Less CPU intensive than SNMP
 - Guaranteed delivery to mediation server
XML – Information extraction

- CLI versus XML:

 Formatted ASCII format:

 Physical interface: fxp0, Enabled, Physical link is Up
 Interface index: 4, SNMP ifIndex: 3

 XML-tagged version:

  ```xml
  <interface>
    <name>fxp0</name>
    <admin-status>enabled</admin-status>
    <operational-status>up</operational-status>
    <index>4</index>
    <snmp-index>3</snmp-index>
  </interface>
  ```
The PSDP Build Process

- PSDP Application Source (from developer)
- SDK "Backing Sandbox" (SDK Libraries)
- SDK Build Environment & Tools
 - FreeBSD
 - VMWare
- Developer & Juniper Certification Info
- PSDP Binary
- PSDP Binary w/Signatures
- PSDP Binary Loaded onto Router