Solving the Critical Performance Challenges for Software Defined Networks

Utiliser l'Intel® DPDK – Communauté dpdk.org

http://dpdk.org

Vincent.Jardin@6WIND.com

V8.0 / ©6WIND 2013. All rights reserved. All brand names, trademarks and copyright information cited in this presentation shall remain the property of its registered owners.

Topics

Introduction

- Performances on Intel architecture
- Technology Overview

While Network Traffic Grows at 25% Annually....

....CPU Performance Grows at only 14% Annually....

....And Virtualization Increases Traffic within Appliances

Linux Networking Kernel Doesn't Meet Scalability Needs

- Performance of Linux kernel stack doesn't scale linearly with number of cores
- Packet processing within Linux kernel can't close the network traffic gap

OWIND

Traffic Growth Limits Availability of CPU Resources for Applications

Fast path Optimizes CPU Utilization

Topics

- Introduction
- Performances on Intel architecture
- Technology Overview

Ivy Bridge Platform Description

Intel Crown Pass platform

- Dual Ivy Bridge processors (each with 12 cores)
- 3.5GHz CPU speed
- 32GB RAM
- 22 x 10G interfaces (327Mpps)

Traffic generator

- Up to 24 x 10Gbps interfaces using daisy chain
- Up to 357 Mpps.

SWIND

IP Forwarding using http://dpdk.org Test Results

- Fast path IP forwarding performance
 - 14.24 Mpps per core
 - 24 Mpps per core with I2switch
 - Up to 313.31 Mpps with 22 cores
- Performance scales linearly with the number of cores configured to run the fast path.
- Performance is independent of frame size.

WIND

IP Forwarding using http://dpdk.org Test Results

©6WIND 2013

DWIND

- Fast path IP forwarding performance
 - 14.24 Mpps per core
 - 24 Mpps per core with I2switch
 - Up to 313.31 Mpps with 22 cores
- Performance scales linearly with the number of cores configured to run the fast path.
- Performance is independent of frame size.

IPsec using http://dpdk.org Test Platform

AES128-HMAC-SHA1 for all the measurements

- 3 measurements:
- Software crypto

DWIND

- PCIe crypto using Intel Cave Creek
- PCIe crypto using Cavium Nitrox

Software IPsec Test Results

IPsec performance

- 5.39 Gbps per core for 1420B packets
- Up to 73.01 Gbps using 14 cores / 28 threads
- Performance scales linearly with the number of cores configured to run the fast path

WIND

Software IPsec Test Results

- IPsec performance using DPDK AES-NI/AVX osftware crypto
 - 1.81 Gbps per core for 64B packets
 - 5.39 Gbps per core for 1420B packets
 - Up to 73.01 Gbps using 14 cores / 28 threads
- Performance scales linearly with the number of cores configured to run the fast path

IPsec with PCIe Intel Cave Creek Test Results

- IPsec using Quick Assist DPDK addon
 - 3.52 Gbps per engine for 1420B packets
 - Up to 40 Gbps (platform limit) using 16 engines
- Performance scales linearly with the number of engines configured to process IPsec transformation

IPsec with PCIe Intel Cave Creek Test Results

©6WIND 2013

OWIND

- IPsec using Quick Assist DPDK addon
 - 13.56 Gbps with 16 engines for 64B packets
 - Up to 40 Gbps (platform limit) with 16 engines for 1420B packets

IPsec with PCIe Cavium Nitrox Test Results

- IPsec performance using Cavium Nitrox DPDK add-on
 - Up to 20.23 Gbps for 1420 bytes

Using a fast path in a Virtual Environment: Complete Solution

©6WIND 2013

OWIND

Accelerate packet processing in the hypervisor

- Leverages PMDs for physical NICs
- Accelerates virtual switching / routing thanks to the fast path (OVS, V(x)LAN, (NV)GRE + other protocols)
- Enables high performance communication with the VMs using a vNIC PMD

Accelerate packet processing in the VMs

- Enables high performance communication with the virtual switch using a vNIC PMD
- Supports vNIC netdevice if Intel® DPDK is not required in the VM
- Accelerates packet processing thanks to the fast path (NFV, TCP)
- In addition, communication with standard VMs using standard vNICs

OVS Acceleration: Performance

- OVS L2 switching performance
 - 6.8 Mpps per core
 - Up to 67.8 Mpps using 10 cores (20 threads)
- Performance scales linearly with the number of cores configured to run the fast path.
- Performance is independent of frame size.

WIND

Topics

- Introduction
- Performances on Intel architecture
- Technology Overview

Fast Path Architecture

Your Three Options for Obtaining Intel® DPDK

6WIND's Enhancements on http://dpdk.org

OWIND

Implement a fast path on http://dpdk.org

OWIND

fast path =

- Intel® DPDK from <u>http://dpdk.org</u>
- + a software stack

Turbo boost your Linux, your vSwitch, your networking solutions

