
dnsdist: high-performance,
DoS and abuse-aware DNS

loadbalancer

Nico Cartron, Remi Gacogne
FRnOG, March 27th 2017

Presentation

I Nico Cartron
I Senior Sales Engineering @ PowerDNS / OX

I Remi Gacogne
I Senior Software Engineer @ PowerDNS / OX

Open-Xchange: An Integrated Stack

Adding to the family of robust products

In 2015, Dovecot and PowerDNS merged with Open-Xchange to
become the leading Open Source powerhouse of messaging &
collaboration services

• 4M mail server installations globally • EU market leader (30%)
• 71,67% worldwide market share • DNSSEC >75% of hosted domains
• Highly scalable and cost efficient • Excellent scalability
• Fully secure • Best in class DoS support

dnsdist – History and Origins

dnsdist listen-ip dest-ip-1 dest-ip-2

I Most load balancers know about HTTP(S), IMAP etc.
I DNS can’t be handled as “a weird kind of web”
I Observation: A busy nameserver is a happy nameserver
I “concentrating load balancer”

dnsdist – Use cases I

On the same host, gives statistics and saves requests history

dnsdist – Use cases II

In front of Recursive servers, protects, balances and filters traffic

dnsdist – Use cases III

In front of Authoritative servers, protects, balances and filters traffic

dnsdist – Features

I Configuration at runtime via the console (local / remote)
I Product core and rules written in C++
I Fully manageable using Lua (config, rules, LB policy...)
I Blazing fast in-memory packet cache
I Very low memory usage: a few MB without caching
I Low CPU usage: several hundred thousand QPS on a
single core

dnsdist – LB policies

I Least Outstanding (default)
I First Available
I Weighted hashed
I Round Robin
I Weighted random
I Custom

dnsdist – Rules

Based on the source, the content, the time of the day...
I Alter the query content (flags, EDNS Client Subnet, ...)
I Route the query to a specific servers pool (“abuse”)
I Drop the query
I Delay or Spoof a response
I Detect and mitigate DoS, infected clients (userspace /
kernel via eBPF)

dnsdist - Default configuration

dnsdist -l 192.0.2.100:53 192.0.2.1 192.0.2.2

I Listen on port 53
I Accept queries from RFC 1918 addresses by default
I Distribute queries to 192.0.2.1 and 192.0.2.2
I Use a sensible loadbalancing policy (“leastOutstanding”)

dnsdist – Simple configuration I

1 setLocal('192.0.2.100:53')
2 setACL('192.0.2.0/24')
3 newServer{address='192.0.2.1', qps=1000, order=1}
4 newServer{address='192.0.2.2', order=2}
5 setServerPolicy(firstAvailable)

dnsdist – Simple configuration II

dnsdist -C simple.lua
Added downstream server 192.0.2.1:53
Added downstream server 192.0.2.2:53
Listening on 192.0.2.100:53
dnsdist 0.0.gf354a19 comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it according to the terms of the GPL version 2
ACL allowing queries from: 192.0.2.0/24
Marking downstream 192.0.2.1:53 as 'up'
Marking downstream 192.0.2.2:53 as 'down'
> showServers()
Name Address State Qps Qlim Ord Wt Queries Drops Drate Lat Outstanding
0 192.0.2.1:53 up 0.0 1000 1 1 0 0 0.0 0.0 0
1 192.0.2.2:53 down 0.0 0 2 1 0 0 0.0 0.0 0
All 0.0 0 0

> getServer(1):setDown()
> showServers()
Name Address State Qps Qlim Ord Wt Queries Drops Drate Lat Outstanding
0 192.0.2.1:53 up 0.0 1000 1 1 18 0 0.0 9.4 0
1 192.0.2.2:53 DOWN 0.0 0 2 1 0 0 0.0 0.0 0
All 0.0 18 0

dnsdist – Live traffic inspection I

> showResponseLatency()
Average response latency: 0.582 msec

msec
0.10 .
0.20 ****
0.40 **
0.80 ****
1.60 .
3.20
6.40
12.80
25.60 *****
51.20 ********
102.40 *******
204.80 *****
409.60 ****
819.20 *

1638.40 .

dnsdist – Live traffic inspection II

> topQueries(5)
1 hehehey.ru. 2358 23.6%
2 localhost. 2281 22.8%
3 time.apple.com. 537 5.4%
4 service-personal.de. 144 1.4%
5 time.euro.apple.com. 109 1.1%
6 Rest 4571 45.7%

> topSlow(4)
1 148.117.189.193.in-addr.arpa. 3 2.4%
2 _sipfederationtls._tcp.helpdesk.symphony.com.my. 2 1.6%
3 eu2-scloud-proxy.ssp.samsungosp.com. 2 1.6%
4 219.116.189.193.in-addr.arpa. 2 1.6%
5 Rest 114 92.7%

> topResponses(2, dnsdist.SERVFAIL)
1 150.209.45.194.in-addr.arpa. 31 22.1%
2 praesenzen.datevstadt.de. 15 10.7%
3 Rest 94 67.1%

dnsdist – Live traffic inspection III

> grepq('ru', 2)
Time Client Server ID Name Type Lat. TC RD AA Rcode
-0.2 192.0.2.92:33846 4905 hehehey.ru. ANY RD Question
-0.2 192.0.2.92:33846 127.0.0.1:5300 4905 hehehey.ru. ANY 0.2 RD Non-Existent domain
-0.2 192.0.2.92:33846 4907 hehehey.ru. ANY RD Question
-0.2 192.0.2.92:33846 127.0.0.1:5300 4907 hehehey.ru. ANY 0.3 RD Non-Existent domain

> grepq({'apple.com.', "100ms"}, 5)
Time Client Server ID Name Type Lat. TC RD AA Rcode
-127.6 192.0.2.92:43583 127.0.0.1:5300 44987 cl4.apple.com. A 247.2 RD No Error. 4 answers

dnsdist – Carbon export

Built-in export of metrics via Carbon (Graphite / Metronome)

dnsdist – Protocol Buffer

1 rl = newRemoteLogger("192.0.2.1:4242")
2 addAction(AllRule(), RemoteLogAction(rl))
3 addResponseAction(AllRule(), RemoteLogResponseAction(rl))

[2016-11-08 21:45:34.351969] Query of size 51: 127.0.0.1 -> 127.0.0.1 (UDP),
id: 20205, uuid: 0225802a7e9446aa9e4e915102c28910

- Question: 1, 1, kernel.org.
[2016-11-08 21:45:36.61240] Response of size 87: 127.0.0.1 -> 127.0.0.1 (UDP),

id: 20205, uuid: 0225802a7e9446aa9e4e915102c28910
- Question: 1, 1, kernel.org.
- Query time: 2016-11-08 21:45:34.352025
- Response Code: 0, RRs: 3

- 1, 1, kernel.org., 600, 199.204.44.194
- 1, 1, kernel.org., 600, 198.145.20.140
- 1, 1, kernel.org., 600, 149.20.4.69

[2016-11-08 21:45:40.158478] Query of size 51: 127.0.0.1 -> 127.0.0.1 (UDP),
id: 24445, uuid: 07939afeddfe4089a2d4fd56f5aca755

- Question: 1, 28, kernel.org.
[2016-11-08 21:45:40.303994] Response of size 95: 127.0.0.1 -> 127.0.0.1 (UDP),

id: 24445, uuid: 07939afeddfe4089a2d4fd56f5aca755
- Question: 1, 28, kernel.org.
- Query time: 2016-11-08 21:45:40.158534
- Response Code: 0, RRs: 2

- 1, 28, kernel.org., 600, 2001:4f8:1:10:0:1991:8:25
- 1, 28, kernel.org., 600, 2620:3:c000:a:0:1991:8:25

dnsdist – API

$ http http://127.0.0.1:8084/api/v1/servers/localhost/statistics X-API-Key:secretapikey
[

{
"name": "queries",
"type": "StatisticItem",
"value": 2445

},
{

"name": "responses",
"type": "StatisticItem",
"value": 2439

},
{

"name": "servfail-responses",
"type": "StatisticItem",
"value": 0

},
[...]

dnsdist – For a Few Rules More

Rules have Selectors with Actions

Selector: does this rule apply?
Actions: Do X if I match

Rules evaluated top-to-bottom, first match wins

dnsdist – Selectors

I Source or destination address
I Query features (QNAME, QTYPE, Flags)
I Number of entries in a packet sections
I Number of labels, length of the name
I Regular Expression (POSIX, RE2)
I Supports And, Or and Not

dnsdist – Actions

I Drop
I Route to Pool
I Truncate (TC=1)
I Return SERVFAIL, NOTIMP, REFUSED
I Return custom answer
I Delay response by n milliseconds
I Remove flags before passing to backend
I Add originating IP address in an EDNS Client Subnet
option

I Log query to TCP/IP host via Protobuf

dnsdist – Examples

Let’s say we are flooded by some CPE sending DNS queries in
a loop:

1 addAction(MaxQPSIPRule(5, 24, 64), DropAction())
-- 5 QPS, grouped by /24 on IPv4 and by /64 on IPv6↪→

2 addAction("domain.targeted.example.", DelayAction(500))
-- delay responses for this domain by 500ms↪→

3 addAction("suspicious.example.", PoolAction("Abuse"))
-- Route suspicious queries to a specific servers pool↪→

dnsdist – Examples

Dynamic blocking is handled in userspace by default, but can
be done in kernel via eBPF on recent Linux kernels (4.1+)

1 function maintenance()
2 addresses = exceedNXDOMAINS(100, 10) -- Get the addresses that

generated more than 100 NXDOMAINs in the last 10 seconds↪→

3 addDynBlocks(addresses, "Exceeded NXDomain", 60) -- Block the
addresses for a minute↪→

4 end

dnsdist – Examples

1 nmg = newNMG()
2 nmg:addMask('198.51.100.0/24')
3 nmg:addMask('203.0.113.0/24')
4

5 selector = AndRule{QTypeRule(dnsdist.A), RegexRule('[a]{5,99}')}
-- match QTYPE A and QNAME matching regex↪→

6 selector = AndRule{selector, NetmaskGroupRule(nmg)}
-- Add the netmask group to the rule↪→

7 addAction(selector, DelayAction(100))
-- Delay the answers to the above selector with 100 ms↪→

dnsdist – Lua load balancing

1 function authOrRec(dq)
2 if (dq.dh:getRD() == false)
3 then
4 return DNSAction.Pool, "auth"
5 end
6 return DNSAction.Pool, "recursor"
7 end
8 addLuaAction(AllRule(), authOrRec)

dnsdist - References

Leaseweb

Packet Clearing House

Switch

T-Mobile Czech Republic

Telepost Greenland

Transip

dnsdist

Try it!

I Packages at https://repo.powerdns.com
I Documentation at http://dnsdist.org

https://repo.powerdns.com
http://dnsdist.org

Powered by LATEX, based on a theme by kaszkowiak.eu

Thank you for your attention

Any questions?

	dnsdist
	dnsdist – Features
	dnsdist – Configuration
	dnsdist – Live traffic inspection

	dnsdist – For a Few Rules More

