Key Indicators in HAProxy

Willy Tarreau
(willy@haproxy.org)

FRNOG 31

Disclaimer

A high level presentation was given based on some of
these slides at Dotscale 2018. This presentation will
Instead focus on deep-diving into the technical stuff.

What does the LB see ?

* global failures (aborts, timeouts)

e abnormal delays caused by network retransmits

e connection failures and retries caused by bad tuning
(eg: conntrack)

e connection slowdowns caused by inefficient firewall
policies (#rules)

What does the LB see (...) ?

* client-side issues (BW limitations)

e per-URL processing time (application issues, svc
[EIEIS)

* per-node vs per-cluster variations
=> narrow down to individual node or shared resource

» deployment issues : new occasional error on a specific
page, can be addressed before going full-scale

Accessing metrics in HAProxy

*LOgQgs:
* Halog, ELK, Prometheus, ...

* Provides unigue-id for tracing/event correlation

e Stats :
 Stats page, CLI, hatop

e Stick-tables (per arbitrary key like IP, URL, cookie) :
* Byte count, cumulated/concurrent conns, errors, ...

Sequence of events on HAProxy

front network back network

Client HAProxy Server

Sequence of events on HAProxy

Client

front network

"

i TCP: Operating system only

HAProxy

back network

Server

Sequence of events on HAProxy

Client

front network

Y

i TCP: Operating system only

HAProxy

back network

Server

Sequence of events on HAProxy

front network back network

% i TCF: Operating system only

Client HAProxy Server

Th affected by :

— key size (CPU time)
— lack of entropy (/dev/random instead of /dev/urandom)
— network losses with the client

Sequence of events on HAProxy

Client

front network

Y

i TCP: Operating system only

HAProxy

back network

Server

10

Sequence of events on HAProxy

front network back network

% i TCF: Operating system only

Client HAProxy Server

Ti affected by :

— client pauses (preconnect, connection reuse)
— network losses with the client
— if POST: MTU issues with the client (VPN)

Sequence of events on HAProxy

Client

front network

Y

i TCP: Operating system only

HAProxy

back network

Server

12

Sequence of events on HAProxy

front network back network

% i TCF: Operating system only

Client HAProxy Server

Tq affected by :

— network losses with the client

— large requests: client’s bandwidth
— if POST: MTU issues with the client (VPN)

Sequence of events on HAProxy

front network back network

% i TCF: Operating system only

Client HAProxy Server

— — — — -
release one conn

14

Sequence of events on HAProxy

Client

front network

% i TCF: Operating system only

HAProxy

Tw affected by :
— server’'s maxconn value

— # requests already in queue
— server’s response time on previous requests

back network

lease one conn
| - -———— =7

Server

15

Sequence of events on HAProxy

front network back network

% i TCF: Operating system only

Client HAProxy Server

— — — — -
release one conn

16

Sequence of events on HAProxy

Client

front network back network

% i TCF: Operating system only

HAProxy

release one conn

Y

] — —

Tc affected by :
— network losses to the server
— TLS handshake on the server (CPU time)

\J

— lack of entropy on the server (if TLS used)

Server

17

Sequence of events on HAProxy

Client

front network

Y

i TCP: Operating system only

HAProxy

-

back network

release one conn

Server

18

Sequence of events on HAProxy

front network back network

- Tr affected by :
— network losses to the server
— server’s processing time

Client — shared component behind server (typ: database) Server

sl ONe Conn

19

Sequence of events on HAProxy

Client

front network

i TCP: Operating system only

HAProxy

back network

release one conn

Server

20

Sequence of events on HAProxy

Client

>

front network

Td affected by :
— network losses to the server

— server’s bandwidth
— haproxy’s bandwidth
— client’s bandwidth (for large objects)

s One conn

back network

Y

Server

21

More timers to come in HAProxy 1.9

 HAProxy now supports heavier per-request workloads

(Lua, device identification, ...)

* Processing times over 200 us can become noticeable

Actions:

09
09
09
09

per-rec
per-rec

per-red

uest tota
uest tota
uest tota

CPU time spent in analysers
CPU time spent in TLS handshake
latency added by other tasks

per-process total stolen time by other processes
* Ability to kill offending tasks
 Ability to alert on high latencies

22

Event timing reports

FMEr responses: 115 25:

Avq over last 1024 success. conn.
- Queue ime: 1]

* Timers are averaged In the stats mil| - Comect tme:
« Each timer appears in the logs e
* Halog -rt/-RT/-pct for quick analysis

e Each timer crossing a limit triggers a timeout

» Each abort at a specific step causes a hard error

=> termination codes

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in

static/srv1 200 2750 - - NN 1/1/1/1/0 0/0 {haproxy.org}
{} "GET /indeZhtml HTTP/1.1" ‘R\\\\\
Cookie code

23

Termination codes

* Distinguish between timeout and abort

* Indicate whom (client, server, haproxy, Kill, ...)
* Indicate when (req,queue,connect,response...)
 Completed by persistence cookie indications

* Filtered and sorted by halog :

halog -tcn|-TCN ... # for filtering
halog -tc # for sorting

24

Other relevant metrics : HTTP status distribution

« Stats page: distribution per frontend/backend/server
* Filter by ranges: halog -hs/-HS
» Sorted output: halog -st

=> graph the distribution and watch for variations
between application deployments

AT, SESSions: i
Cum. HTTP requests: X -I 521
- HTTF 1xx responses: 0
- HTTF 2xx responses: 5610 434
Compressed 2y 2 531 b2 [46%)

- HTTP 31 responses: G536 194
- HTTF 3ux responses:

- HTTF 5xX responses:

- mher respunses

Other relevant metrics : queue length

e Uses server maxconn

* Grows exponentially with slowdowns : easy to detect!
 Tells you how many extra servers you need

* Reported by halog -Q/-QS

« Shown in real time on the stats page per backend/srv

=> If you watch only one metric, watch this one!

qitwrebhaproxy

26

Other relevant metrics : LB fairness

LB algorithm implies fairness between servers :

» Equal request count with roundrobin
=> Higher than average concurrency indicates
abnormally slow server

e Equal load with leastconn
=> Low req count indicates abnormally slow server

=> graph relevant values within the farm

Qu=ue Session rate Sessions

Cur M= | Limit Cur M= Limit Cur | Max irmit [a) =) LbTat
web01 o| o -| 25| =&\ 58 - 0| 5 70l041
we b0z 1] 1] -| 26 385 a]H] 421 - 33 5 690 595

webO= 0 0 - 26 385 ts] 451 - (=] & FO0 924

Backend 0 0 20 17| 1082| 2050 17 097 566 17 092 570

27

Other relevant metrics : error rate

» Global: halog -e

* Per server: halog -srv

* Per client IP: halog -e -ic (detect bad CDN nodes)
* Per URL: halog -ue

« Stats page: per frontend/backend/server
 Stick-tables: per arbitrary key using http_err_rate()

=> no threshold, watch for variations

28

Useful entries in log-format

» Default httplog format is quite rich
* Can be improved using the log-format directive
* Hint: log stick-table stats for similar keys

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in

static/srvi 2750 - - NN 1/1/1/1/0 {haproxy.org}
{} "GET /index.html HTTP/1.°"
Queue
Timers Length
Conn
HTTP status : Count
Byte Term Cookie

count Code Code

29

Tips: sampling : why / when
"I can't enable logs, | have too much traffic!"

e an average syslog server can store 20k events/s
without sweating

e that's 1.7B events/day or 350GB of uncompressed
haproxy logs/day

e compresses to 1TB/month

e for $100 you can store 4 months with no loss

* have more traffic / not interested in this level of detall ?

log only 5% of requests
http-request set-log-level silent unless { rand(100) -1t 5 }

30

Tips: selective logging: why /| when

* you only want to catch suspicious events

* disable logging unless Tc/Tq/Tr/Tw/... Is above a certain
threshold

* on the fly for selected keys from the CLI + stick-table

* also see "option dontlognormal"

 WARNING: you'll lose any valid reference

31

Tips: other halog goodies

* Poorly documented, use halog --help

e response time per url: halog -uat

* errors per server: halog -srv

* Percentiles on reg/queue/conn/resp times: halog -pct
* detect stolen CPU /swap : halog -ac .. -ad ..

* very fast (1-2 GB per second)

=> Use it in production to figure the relevant metrics

32

Success stories

Customer spotting a broken fiber between two core switches

HA HAL

T

2 6O

e Tc from HA1 to srv 1,2,3,5 always low, srv 4,6 high at 99 pct

e Tc from HAZ to srv 1,2,4,6 always low, srv 3,5 high at 99 pct
=> poth haproxy and servers out of cause

* ISSUe rate stable at various traffic levels => not congestion

* inter-switch link apparently at cause but not for all flows

* Inter-switch link made of two fibers balanced on MAC tuple

 thanks to long-term logs, origin could even be identified

33

Success stories

Customer figuring a wrong web server configuration using
/dev/random

* Tc abnormally high with lots of random values to several
seconds, and only for TLS

* timer also covers TLS handshake
=> not a network, hardware or performance issue, only
server config.
=> system was regularly running out of entropy due to
mistakenly using /dev/random as a random source for SSL

34

Conclusion

» exploit your stats

» enable logs on LBs, no excuse for not doing it!
 process them automatically, manually once in a while
e compare numbers between similar objects

* detect anomalies

* fix problems before they are witnessed

e profit :-)

35

