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Disclaimer

A high level presentation was given based on some of 
these slides at Dotscale 2018. This presentation will 
instead focus on deep-diving into the technical stuff.
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What does the LB see ?

● global failures (aborts, timeouts)
● abnormal delays caused by network retransmits
● connection failures and retries caused by bad tuning 

(eg: conntrack)
● connection slowdowns caused by inefficient firewall 

policies (#rules)
...  
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What does the LB see (…) ?

● client-side issues (BW limitations)
● per-URL processing time (application issues, svc 

partners)
● per-node vs per-cluster variations

=> narrow down to individual node or shared resource
● deployment issues : new occasional error on a specific 

page, can be addressed before going full-scale
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Accessing metrics in HAProxy

● Logs :
● Halog, ELK, Prometheus, …
● Provides unique-id for tracing/event correlation

● Stats :
● Stats page, CLI, hatop

● Stick-tables (per arbitrary key like IP, URL, cookie) :
● Byte count, cumulated/concurrent conns, errors, …
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Sequence of events on HAProxy
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Sequence of events on HAProxy



22

More timers to come in HAProxy 1.9

● HAProxy now supports heavier per-request workloads 
(Lua, device identification, …)

● Processing times over 200 µs can become noticeable

Actions:
● log per-request total CPU time spent in analysers
● log per-request total CPU time spent in TLS handshake
● log per-request total latency added by other tasks
● log per-process total stolen time by other processes
● Ability to kill offending tasks
● Ability to alert on high latencies
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Event timing reports

● Timers are averaged in the stats
● Each timer appears in the logs
● Halog -rt/-RT/-pct for quick analysis
● Each timer crossing a limit triggers a timeout
● Each abort at a specific step causes a hard error
=> termination codes

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in
   static/srv1 10/0/30/69/109 200 2750 - - SDNN 1/1/1/1/0 0/0 {haproxy.org}
   {} "GET /index.html HTTP/1.1"

Timers Term code Cookie code



24

Termination codes

● Distinguish between timeout and abort
● Indicate whom (client, server, haproxy, kill, ...)
● Indicate when (req,queue,connect,response...)
● Completed by persistence cookie indications
● Filtered and sorted by halog :

# halog -tcn|-TCN ... # for filtering
# halog -tc           # for sorting
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Other relevant metrics : HTTP status distribution

● Stats page: distribution per frontend/backend/server
● Filter by ranges: halog -hs/-HS
● Sorted output: halog -st

=> graph the distribution and watch for variations 
between application deployments
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Other relevant metrics : queue length

● Uses server maxconn
● Grows exponentially with slowdowns : easy to detect!
● Tells you how many extra servers you need
● Reported by halog -Q/-QS
● Shown in real time on the stats page per backend/srv

=> If you watch only one metric, watch this one!
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Other relevant metrics : LB fairness

LB algorithm implies fairness between servers :
● Equal request count with roundrobin

=> Higher than average concurrency indicates 
abnormally slow server

● Equal load with leastconn
=> Low req count indicates abnormally slow server

=> graph relevant values within the farm
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Other relevant metrics : error rate

● Global: halog -e
● Per server: halog -srv
● Per client IP: halog -e -ic (detect bad CDN nodes)
● Per URL: halog -ue
● Stats page: per frontend/backend/server
● Stick-tables: per arbitrary key using http_err_rate()

=> no threshold, watch for variations
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Useful entries in log-format

● Default httplog format is quite rich
● Can be improved using the log-format directive
● Hint: log stick-table stats for similar keys

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in
   static/srv1 10/0/30/69/109 200 2750 - - SDNN 1/1/1/1/0 0/0 {haproxy.org}
   {} "GET /index.html HTTP/1.1"

Timers

HTTP status Byte
count

Term
Code

Cookie
Code

Conn
Count

Queue
Length
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Tips: sampling : why / when

"I can't enable logs, I have too much traffic!"

● an average syslog server can store 20k events/s 
without sweating

● that's 1.7B events/day or 350GB of uncompressed 
haproxy logs/day

● compresses to 1TB/month
● for $100 you can store 4 months with no loss
● have more traffic / not interested in this level of detail ?

      # log only 5% of requests
      http-request set-log-level silent unless { rand(100) -lt 5 }
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Tips: selective logging: why / when

● you only want to catch suspicious events
● disable logging unless Tc/Tq/Tr/Tw/... is above a certain 

threshold
● on the fly for selected keys from the CLI + stick-table
● also see "option dontlognormal"
● WARNING: you'll lose any valid reference
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Tips: other halog goodies

● Poorly documented, use halog --help
● response time per url: halog -uat
● errors per server: halog -srv
● Percentiles on req/queue/conn/resp times: halog -pct
● detect stolen CPU / swap : halog -ac … -ad …
● very fast (1-2 GB per second)

=> Use it in production to figure the relevant metrics
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Success stories

Customer spotting a broken fiber between two core switches

● Tc from HA1 to srv 1,2,3,5 always low, srv 4,6 high at 99 pct
● Tc from HA2 to srv 1,2,4,6 always low, srv 3,5 high at 99 pct

=> both haproxy and servers out of cause
● issue rate stable at various traffic levels => not congestion
● inter-switch link apparently at cause but not for all flows
● inter-switch link made of two fibers balanced on MAC tuple
● thanks to long-term logs, origin could even be identified
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Success stories

Customer figuring a wrong web server configuration using 
/dev/random

● Tc abnormally high with lots of random values to several 
seconds, and only for TLS

● timer also covers TLS handshake
=> not a network, hardware or performance issue, only 
server config.
=> system was regularly running out of entropy due to 
mistakenly using /dev/random as a random source for SSL
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Conclusion

● exploit your stats
● enable logs on LBs, no excuse for not doing it!
● process them automatically, manually once in a while
● compare numbers between similar objects
● detect anomalies
● fix problems before they are witnessed
● profit :-)


