
Key Indicators in HAProxy
Willy Tarreau

(willy@haproxy.org)

FRnOG 31

2

Disclaimer

A high level presentation was given based on some of
these slides at Dotscale 2018. This presentation will
instead focus on deep-diving into the technical stuff.

3

What does the LB see ?

● global failures (aborts, timeouts)
● abnormal delays caused by network retransmits
● connection failures and retries caused by bad tuning

(eg: conntrack)
● connection slowdowns caused by inefficient firewall

policies (#rules)
...

4

What does the LB see (…) ?

● client-side issues (BW limitations)
● per-URL processing time (application issues, svc

partners)
● per-node vs per-cluster variations

=> narrow down to individual node or shared resource
● deployment issues : new occasional error on a specific

page, can be addressed before going full-scale

5

Accessing metrics in HAProxy

● Logs :
● Halog, ELK, Prometheus, …
● Provides unique-id for tracing/event correlation

● Stats :
● Stats page, CLI, hatop

● Stick-tables (per arbitrary key like IP, URL, cookie) :
● Byte count, cumulated/concurrent conns, errors, …

6

Sequence of events on HAProxy

7

Sequence of events on HAProxy

8

Sequence of events on HAProxy

9

Sequence of events on HAProxy

10

Sequence of events on HAProxy

11

Sequence of events on HAProxy

12

Sequence of events on HAProxy

13

Sequence of events on HAProxy

14

Sequence of events on HAProxy

15

Sequence of events on HAProxy

16

Sequence of events on HAProxy

17

Sequence of events on HAProxy

18

Sequence of events on HAProxy

19

Sequence of events on HAProxy

20

Sequence of events on HAProxy

21

Sequence of events on HAProxy

22

More timers to come in HAProxy 1.9

● HAProxy now supports heavier per-request workloads
(Lua, device identification, …)

● Processing times over 200 µs can become noticeable

Actions:
● log per-request total CPU time spent in analysers
● log per-request total CPU time spent in TLS handshake
● log per-request total latency added by other tasks
● log per-process total stolen time by other processes
● Ability to kill offending tasks
● Ability to alert on high latencies

23

Event timing reports

● Timers are averaged in the stats
● Each timer appears in the logs
● Halog -rt/-RT/-pct for quick analysis
● Each timer crossing a limit triggers a timeout
● Each abort at a specific step causes a hard error
=> termination codes

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in
 static/srv1 10/0/30/69/109 200 2750 - - SDNN 1/1/1/1/0 0/0 {haproxy.org}
 {} "GET /index.html HTTP/1.1"

Timers Term code Cookie code

24

Termination codes

● Distinguish between timeout and abort
● Indicate whom (client, server, haproxy, kill, ...)
● Indicate when (req,queue,connect,response...)
● Completed by persistence cookie indications
● Filtered and sorted by halog :

halog -tcn|-TCN ... # for filtering
halog -tc # for sorting

25

Other relevant metrics : HTTP status distribution

● Stats page: distribution per frontend/backend/server
● Filter by ranges: halog -hs/-HS
● Sorted output: halog -st

=> graph the distribution and watch for variations
between application deployments

26

Other relevant metrics : queue length

● Uses server maxconn
● Grows exponentially with slowdowns : easy to detect!
● Tells you how many extra servers you need
● Reported by halog -Q/-QS
● Shown in real time on the stats page per backend/srv

=> If you watch only one metric, watch this one!

27

Other relevant metrics : LB fairness

LB algorithm implies fairness between servers :
● Equal request count with roundrobin

=> Higher than average concurrency indicates
abnormally slow server

● Equal load with leastconn
=> Low req count indicates abnormally slow server

=> graph relevant values within the farm

28

Other relevant metrics : error rate

● Global: halog -e
● Per server: halog -srv
● Per client IP: halog -e -ic (detect bad CDN nodes)
● Per URL: halog -ue
● Stats page: per frontend/backend/server
● Stick-tables: per arbitrary key using http_err_rate()

=> no threshold, watch for variations

29

Useful entries in log-format

● Default httplog format is quite rich
● Can be improved using the log-format directive
● Hint: log stick-table stats for similar keys

haproxy[14389]: 10.0.1.2:33317 [06/Feb/2018:12:14:14.655] http-in
 static/srv1 10/0/30/69/109 200 2750 - - SDNN 1/1/1/1/0 0/0 {haproxy.org}
 {} "GET /index.html HTTP/1.1"

Timers

HTTP status Byte
count

Term
Code

Cookie
Code

Conn
Count

Queue
Length

30

Tips: sampling : why / when

"I can't enable logs, I have too much traffic!"

● an average syslog server can store 20k events/s
without sweating

● that's 1.7B events/day or 350GB of uncompressed
haproxy logs/day

● compresses to 1TB/month
● for $100 you can store 4 months with no loss
● have more traffic / not interested in this level of detail ?

 # log only 5% of requests
 http-request set-log-level silent unless { rand(100) -lt 5 }

31

Tips: selective logging: why / when

● you only want to catch suspicious events
● disable logging unless Tc/Tq/Tr/Tw/... is above a certain

threshold
● on the fly for selected keys from the CLI + stick-table
● also see "option dontlognormal"
● WARNING: you'll lose any valid reference

32

Tips: other halog goodies

● Poorly documented, use halog --help
● response time per url: halog -uat
● errors per server: halog -srv
● Percentiles on req/queue/conn/resp times: halog -pct
● detect stolen CPU / swap : halog -ac … -ad …
● very fast (1-2 GB per second)

=> Use it in production to figure the relevant metrics

33

Success stories

Customer spotting a broken fiber between two core switches

● Tc from HA1 to srv 1,2,3,5 always low, srv 4,6 high at 99 pct
● Tc from HA2 to srv 1,2,4,6 always low, srv 3,5 high at 99 pct

=> both haproxy and servers out of cause
● issue rate stable at various traffic levels => not congestion
● inter-switch link apparently at cause but not for all flows
● inter-switch link made of two fibers balanced on MAC tuple
● thanks to long-term logs, origin could even be identified

34

Success stories

Customer figuring a wrong web server configuration using
/dev/random

● Tc abnormally high with lots of random values to several
seconds, and only for TLS

● timer also covers TLS handshake
=> not a network, hardware or performance issue, only
server config.
=> system was regularly running out of entropy due to
mistakenly using /dev/random as a random source for SSL

35

Conclusion

● exploit your stats
● enable logs on LBs, no excuse for not doing it!
● process them automatically, manually once in a while
● compare numbers between similar objects
● detect anomalies
● fix problems before they are witnessed
● profit :-)

