Building an SD-WAN solution based on Wireguard tunnels

Robin Douine
Context
Target
Expected benefits

- Reliability
- Deployment time
- Consumption-based pricing model
Technical objectives

• Support of several hundreds of Gbps
• Change routing dynamically based on the IP transit state
• Use of standard components
• Use of commodity hardware
Routingctl
Gatewan

- Using Serf to build a secure mesh with the remote Gatewans
- Exchanging the local prefixes with the remote Gatewans
- Creating Wireguard tunnels with the remote Gatewans for each IP transit provider
- Collecting metrics via tunnels probing (loss, latency, jitter)

https://www.serf.io
https://www.wireguard.com
Gatewan

• Using Serf to build a secure mesh with the remote Gatewans
• Exchanging the local prefixes with the remote Gatewans
• Creating Wireguard tunnels with the remote Gatewans on each IP transit provider
• Collecting metrics via tunnels probing (loss, latency, jitter)

https://www.serf.io
https://www.wireguard.com
id: 3755b299-afe6-4d63-bfe8-8181d44013de
 networks: 10.1.11.0/24, 10.176.0.0/14, 10.88.0.0/14, fd05::/16
meta:
 datacenter: sg1
 sdwan_local_transit: lumen
 sdwan_peer_transit: telstra
usage: capacity: 1.0 Gbps rx_bps: 1.6 Mbps tx_bps: 339 kbps
probe:
 source_addr: 10.13.76.135
 target_endpoint: 10.13.76.134:7117
 measurements: 10
 loss: 0.0%
 latency: 224.36043ms
 jitter: 186.54μs
 reorder: 0.0%
peer: gatewan09-sg1
state: Established
target_datacenter: sg1
interface: sdwan52
started_at: Mon, 01 Jan 0001 00:00:00 UTC
local_info:
 public_endpoint: [2620:100:a006::c]:6152
 local_address_v4: 10.13.76.135
 local_address_v6: fd05:1:0:2:5::87
 public_key: 92777e8837d9d9090adabd80e192dc6c225f200aa36428f069388b4fee60b6b484f
 echo_port: 7054
peer_info:
 public_endpoint: [2406:2600:a::1]:6215
 local_address_v4: 10.13.76.134
 local_address_v6: fd05:1:0:2:5::86
 public_key: d99d959796c9dc5b66c4e4b9cf5419c4098336ed2855b4f1715be9547a20d0f06
 echo_port: 7117
Gatewan

```
- id: 3755b299-afe6-4d63-bfe8-8181d4013de
  networks: 10.1.11.0/24, 10.176.0.0/14, 10.88.0.0/14, fd05::/16
  meta:
    datacenter: sg1
    sdwan_local_transit: lumen
    sdwan_peer_transit: telstra
  usage:
    capacity: 1.0 Gbps
    rx_bps: 1.6 Mbps
    tx_bps: 339 kbps
  probe:
    source_addr: 10.13.76.135
    target_endpoint: 10.13.76.134:7117
    measurements: 10
  loss: 0.0%
  latency: 224.36043ms
  jitter: 186.54µs
  reorder: 0.0%
  peer: gatewan09-sg1
  state: Established
  target_datacenter: sg1
  interface: sdwan52
  started_at: Mon, 01 Jan 0001 00:00:00 UTC
  local_info:
    public_endpoint: [2620:100:a006::c]:6152
    local_address_v4: 10.13.76.135
    local_address_v6: fd05:1:0:2::87
    public_key: 92777e8837d9090adadb80e192dc6c225f200aa36428f06938b4fee60bbcc484f
    echo_port: 7054
  peer_info:
    public_endpoint: [2406:2600:a::1]:6215
    local_address_v4: 10.13.76.134
    local_address_v6: fd05:1:0:2::86
    public_key: d99d959796c9dc5b66c4e4b9c5419c4098336ed2855b4f1715be9547a20df06
    echo_port: 7117
```
• How do we send the traffic to the Gateway?
• Use of VXLAN to encapsulate the traffic
Controller

- Calculating a tunnel preference according to a policy
- The policy uses the metrics gathered by the Gatewans
- Choosing tunnels until reach the required capacity
- Building orders and sending them to the bgpctl and the Gatewans

https://www.serf.io/
Bgpctl

• Provide dynamically the local prefixes to the controller
• Translate the controller's orders to BGP EVPN Route Type 5 (IP Prefix route)
• Based on GoBGP

https://osrg.github.io/gobgp/
Bgpctl

- Provide dynamically the local prefixes to the controller
- Translate the controller's orders to BGP EVPN Route Type 5 (IP Prefix route)
- Based on GoBGP

https://osrg.github.io/gobgp/
SD-WAN
The journey of the packets
Drawbacks

• Debugging is complex
• Tricky bootstrapping (chicken-and-egg problem)
• Vulnerable to DDoS
Next steps

• Improve the performance per tunnel
• Adding more parameters in the controller choice (e.g. IP transit interface usage)
Conclusion
Thank you