

Internet trafic monitoring

A step forward in traffic control and management

Philippe OWEZARSKI

LAAS-CNRS Toulouse, France owe@laas.fr

- Active vs. Passive measurements
- Internet traffic characterization and QoS issue analysis (oscillations & LRD)
- Illustration on a case study: comparison of TCP vs TFRC impacts on traffic oscillations
- Example of a DoS attack characteristics
- A measurement based approach for trafic control and management
- Conclusion

Active measurements

- Active measurements
 - Consists in sending packets on a network and observing results (Delay, RTT, Throughput, etc.)
 - User point of view
 - Best solution to evaluate the service you can get from the network you're connected to
- Drawbacks
 - Probe packets change the state of the network (can be seens as an attack)

→IETF IPPM WG is working on the definition of probing scenarios minimizing the effects on the network state

🔁 Passive measurements

- Capture packets (or headers)
- Not intrusive at all
- Carrier / ISP point of view
- Best solution for a carrier to measure traffic
- Drawbacks
 - Sampling issues
 - IRTF WG \rightarrow IMRG
 - Difficult to get a user point of view
 - Technical limits (speed of components, capacity)

🔁 On line vs. Off line measurements

- On line
 - Packets are analyzed in real-time
 - Analysis on very long periods
 - But complexity of analysis is quite limited
- Off line
 - Packets are stored on hard drives / SAN for later analysis
 - Possibilities of analysis are endless
 - Possibility of correlating several traces
 - But amount of stored data is really huge (small periods only)

Internet traffic evolution (May 2000)

Internet traffic evolution (August 2000)

Impact of P2P on traffic

- Thousands of mice
- A large number of elephants
- ⇒ Change flow size distribution

Flow size distribution

Traffic oscillation issues

FRnOG, Paris, France, July 9th, 2004

Oscillations persistence characterization

Multiple causes for Internet oscillations

- TCP like congestion control mechanisms
 (Slow Start and Congestion Avoidance mechanisms / Closed control loop)
- 2. Increase of transmitted file size
- 3. Increase of network capacities (and overprovisioning)

⇒ Increase of oscillations

- Amplitude
- Range

traffic oscillations limit network performance « High variability » paper of Willinger (IEEE ToN 96) Link between LRD, oscillations and QoS

Disturbances are mainly due to elephants

What if elephant flows regularity increases?

Principle of the case study ⇒ Use the TFRC mechanism to transmit elephant flows

- TFRC is a new congestion control mechanism dedicated for stream oriented applications
- TFRC proposes a smooth sending rate with very soft increases and decreases
 - Computed once by RTT by receiver
 - According to the loss event rate (LER)

LER = a loss event is considered if at least one loss appears in a RTT Experiment description

Objective: comparative evaluation of the global traffic characteristics if elephants use TCP or TFRC as the transmission protocol

Start points:

- Traffic profile based on microscopic monitoring traces
- NS-2 simulations based on replaying actual traffic traces

Simulation principles:

- Elephant flows are transmitted using TFRC
- Others flows use TCP New Reno

 Classical traffic ones: throughput mean and standard deviation

• One related to traffic variability:

Stability Coefficient (SC) = -

exchanged average traffic

exchanged traffic standard deviation (σ)

QoS statistical one: LRD (Hurst parameter)
 ⇒ Estimation of traffic oscillating range

TFRC impact on flow QoS: throughput analysis

Protocol	Average troughput (kB)	Throughput σ (kB)	SC
TCP New Reno (NR): real case	82.335	157.959	0.521
TCP NR & TFRC: simulated case	77.707	102.176	0.761

 Table 1. Throughput evolution during time for TCP and TFRC protocols

FRnOG, Paris, France, July 9th, 2004

TFRC impact on flow QoS: LRD analysis

Real traffic

Simulated traffic

C

LRD due to a UDP flooding attack

Partial conclusion

- 1. Traffic oscillations highlighted:
 - Causes (TCP + elephants + network capacity)
 - Illustration of the bad impact of LRD on QoS
- 2. TFRC which generates smoother traffic than TCP
 - Helps to optimize performances
 - Smoothing traffic is essential for being able to guarantee stable QoS
 - Validate the use of LRD to characterize oscillations

- TFRC limitation problem: it cannot generate more traffic than TCP (equation based...)
- it cannot benefit from the traffic characteristics improvements

Additional problematics (1)

New traffic analysis exhibited that:

- Traffic characteristics are different on different links, at different times...
- Traffic is not stationary
- Many ruptures arises
 - On daily, weekly, monthly yearly basis
 - Random unexpected ruptures
 - Failures, Byzanthin behaviours
 - DoS attacks
 - Legitimate traffic

Additional problematics (2)

Topological issues for end to end QoS

- The Internet is split into AS and domains
- Each domain / AS is designed and managed without regard of other domains / AS
- Few cooperations between carriers and ISP
 → they are competing to attract clients

Measurement Based Networking

- Principle : Extend preceding approach (MBNE) with mechanisms reacting in real time to measurements performed in a large number of points of the network
- Points to address :
 - RT measurement system (passive and active)
 - Measurements signaling
 - Mechanisms to reacting to measurements (routers or end hosts)

Measurement Based Architecture

C RT measurement system

- What to measure ?
 - Throughput (passive in intra-domain, active in inter-domains) and available capacities
 - Ruptures in the traffic (attacks, events driven, ...)
 - Traffic matrices
 - Oscillations
 - Losses
 - Delays
- $RT \rightarrow$ what granularity?

Signaling system and protocol

- What parameter to signal ?
- How to signal these parameters ?
 - COPS, SIP, BGRP, ...
 - Mcast/P2P/...?, Push/pull?

Reaction to measurements

- How to react to measurements ?
- Are measurements trustable?
 - Especially for inter-domain on a market where comptetition is the standard
- What to do if measurements are missing?
 - Signaling issue if the network is congested
 - \rightarrow Differentiated QoS services (PQ, ...)
 - \rightarrow Game theory : dead reckoning

- MBNE (Network Engineering) \rightarrow MBN
- MBN/MBA proved to work well
- Promising approach in many areas
 - QoS
 - Security
 - Management
 - routing
 - Etc.

... But still a lot of work to do