CISCO SYSTEMS

Video Delivery in Broadband Networks

FRNOG Conference Paris, 18/11/2005

Ignacio Martinez igmartin@cisco.com

Session Number Presentation_ID

© 2005 Cisco Systems, Inc. All rights reserved.

Cisco Confidential

Agenda

- Introduction
- IPTV and Standards
- IPTV Building blocks
- IP Enablers
- Video over Broadband Architecture
- Q & A

Introduction

• IPTV is happening: 4 million subscribers by 2005 end

Enhanced customer experience driven by IP

 IPTV is an innovative technology that borrows many things from years of DVB/ATSC experience

MPEG digital video compression and transport for compatibility

IP for service flexibility

 IPTV services made possible by Broadband access leveraging on Carrier Ethernet architecture

Foundation for 3play services

Uses NGN architecture for service scalability

IPTV and Standards

Prese lotatiosystems, Inc. All rights reserved. Cisco Systems, Inc. All rights reserved.

IPTV Standardization

IETF (signaling)

- Multicast-based services RFC-3376 IGMPv3
- On-demand services
 RFC-2326 RTSP
- Other IETF standards relevant: DHCP, DNS, ...
- However, IGMPv2 is by far the most common signaling protocol used today

IETF (transport)

- Transport Service provided jointly by
 - UDP: checksum and multiplexing
 - **RTP: sequencing and timestamping**
- Defined in RFC-2250 "RTP Payload for MPEG-1/2 streams"
 - Section 2. MPEG TS encapsulation (MP2T payload type)
 - Section 3. MPEG ES encapsulation (MPV)
- However, industry keeps on using the "de-facto" MPEG-TS/UDP encapsulation

Encapsulation of MPEG-2 TS on IP

				RTP							
				RTP Header (12)	MPEG-2 188 B						
			UDP Header (8)	RTP Header (12)	MPEG-2 188 B						
		IP Header (20)	UDP Header (8)	RTP Header (12)	MPEG-2 188 B						
	L2 Header (26)	IP Header (20)	UDP Header (8)	RTP Header (12)	MPEG-2 188 B						
2-3% L3 overhead, 1316 bytes MPEG2 + 28 (40 w/ RTP) IP											
4-5% 2+ 3 overhead 1316 + 54 (66 w/ RTP) bytes											

DVB-IPI An architecture for the delivery of DVB services over IP networks

- DVB-IPI Bluebook A086 ETSI Draft TS 102 034 1.1.1
- Service delivery
 - MPEG-2 TS encapsulation
 - Use of RTP and RTSP for VoD
- Service discovery
 - Using DVB PSI/SI information and DNS
- Service selection
 - Using IGMP and RTSP
- STB authorization (DHCP)

http://www.dvb.org/documents/modules/a086.Draft%20TS%20102%20034%20v1.1.1.pdf

DVB-IPI Transport and Network requirements

- MPEG-2 TS Encapsulation
- RTP is mandatory
- Each stream carries DVB SI tables (PAT/PMT)
- Total jitter < +/- 20 msec
- Packet loss < 1 noticeable artifact per hour (10⁻⁶)
- QoS settings recommendation

Pro-MPEG

- Professional Video Transport focus
- Transport of MPEG-2 (COP-3) and uncompressed SMPTE 292M (HDTV) (COP-4)
- Use of RTP
- Generally more strict in packet loss, less in jitter
- Jitter < +/- 60 msec
- FEC scheme for error recovery

http://www.pro-mpeg.org/publications/pdf/Vid-on-IP-CoP3-r2.pdf

Pro-MPEG COP-3 2D-FEC scheme

- Based on RFC2733, XOR FEC packets
- FEC streams sent on UDP ports RTP+2 (col), RTP+4 (row)

IPTV Building Blocks

Prese notations inc. All rights reserved. Cisco Systems, Inc. All rights reserved.

"Traditional" IPTV HE components

© 2005, Cisco Systems, Inc. All rights reserved

IP Centric HE

Content Protection: CAS and DRM

- Conditional Access System (CAS) comes from Broadcasting world
 - Focus on protecting the service against theft
 - Protects content at the transport level
 - Moving from H/W based (SmartCard) to S/W based
- Digital Rights Management (DRM) comes from IT world
 - Focus on the contractual rights between the content owner and the consumer
 - When and how many times the content may be accessed and eventually recorded
 - Protects content at the application level

Middleware

- Service Discovery (EPG) and Selection
- Interface to Subscriber Management and Billing
- Abstraction layer that hides the access network to the STB
- Portal
 - Tandberg TV, Minerva
- Commercial
 - Orca, NDS, Envivio, Motorola
- Home made
 - Fastweb, Imagenio
- Vertically Integrated
 Microsoft TV

Set-Top-Box

- Linux based (Amino, Kreatel)
 - **Portal Middleware**
 - Commercial (Orca, Myrio)
 - Home made (Telefonica, Fastweb)
- MSTV (Kiss)
- Recent trends to support

HD

- **AVC decoders**
- Still no general support for IGMPv3

STB operation

GOPs, network failures and channel change

Group Of Pictures (GOP) and frame relevance

- MPEG-2 GOP of size 12 => 480 msec (25 fps)
 - Hitting an I-frame (> 20% probability) affects the whole GOP
 - < 300 msec should cause a single-GOP loss, i.e. minor glitch</p>
 - STB vendor dependencies

Publishing content

- Asset = Content + Metadata describing the content
- Description uses XML language
- CableLabs specifications available
- Building and associating Metadata with content
- Linking Metadata with EPG
- Asset Management

Pushing titles (media + metadata) to the edge servers (CDN) Making titles available/unavailable (publishing)

Video over Broadband Architecture

Next Generation Broadband Architecture

Video over BB. Architecture highlights

- Distributed injection point model
 - L2/L3 "Service Bus" concept
 - **VoD and Broadcast separated from B-RAS**
- QoS model in aggregation network
 - Mapping to .1p CoS on access
 - Packet queuing capabilities on DSLAM
- L3 preferred over L2 for Video on aggregation network
- PIM SSM for multicast
- CAC for unicast and multicast
- Service separation
- Asymmetric networking

L2 vs. L3 on the Aggregation Network

- General scalability concerns of L2 domains
 - Scope of broadcast domain
 - Individual addresses vs. prefixes
- Default L2 forwarding is constrained flooding
 - By MAC learning (unicast) By IGMP/PIM snooping (multicast)

Video is unidirectional!

- L3 forwarding is always optimal
- L2 reverts to flooding in the presence of STP topology changes MAC entries aging out
- L2 Multicast relies on the Designated Router and the Querier Single injection point (DR)
 Both must be re-elected in case of failure

Multicast trees

Applications Spectrum

Advantages of SSM

• Simpler

Sources are known in advance

No RP

Single (SPT) tree

More secure

Only one source can send to SSM channel

Prevents DoS by malicious attacks or misconfigurations

More scalable

Better use of address space

Monitoring

- One Monitoring VLAN per Remote Location
- Backhauled at L2 (e.g. EoMPLS) to NOC
- One channel per Monitoring VLAN. Reuses empty Aggregation network

Multicast Load Balancing

- Layer 3 alternative to tunnels or link bundling (EtherChannel)
- Load balance IP multicast traffic on a per source/RP basis

UDLR and Asymmetric Networking

Physical Interface

Logical Interface (Vlan)

Tunnel Interface

Τ

Receive-only Interface Send-only Interface

L3 tools for securing the UNI

- Data plane
 - Filter upstream multicast injection
- Control plane
 - PIM
 - IGMP

Prevent

PIM Adjacencies (hellos) PIM Registers PIM Assert election DR election Unauthorized SA messages Unauthorized Access Flooding of control messages (DoS)

Using

Administative Boundaries Mroute limits Message Authorization Access Control Lists Filtering Throttling Rate limit

QoS Guidelines for Video

- Network SLAs
 - Delay: not critical. Most applications unaffected
 - Jitter: not critical. STBs can buffer 200 msec
 - Packet-loss: critical. Packet loss rate < 10⁻⁶ (one noticeable artifact per hour of streaming)
- Packet loss due to queue drops by bursts at aggregation points from multiple sources (also number of hops, link occupation)
- Size the queue depth using probability analysis so packet loss rate (e.g. 10⁻⁶) is below target
- If drop needed, drop VoD packets first (threshold)

Service Oversubscription

1) What needs to be oversubscribed

	With Admission Control	Without Admission Control
Non oversubscribed		Broadcast Video
Oversubscribed	Voice VoD Switched Broadcast	Internet Access

- 2) Capacity planning
- 3) Define traffic classes and assign resources to them
- 4) Apply CAC (off-path geographical or on-path CAC)

Traffic classes and network behavior

	DiffServ DSCP	Prec	Behavior	Queuing	Other
Voice and voice signaling	EF	5	Low latency, High priority	Weighted queue	Police on exceeding weight
Video Broadcast	AF41	4	Assured forwarding, very low drop	Weighted	
Video on Demand	AF42	1	Assured forwarding, low drop	queue	Drop on exceeding threshold
Video Signaling	CS3	3	Non oversubscribed class	Weighted queue	Police on exceeding weight
Internet Access	BE	0	Best effort	Weighted queue	WRED

RSVP CAC for VoD

RTSP SETUP(url) RSVP PATH PATH PATH STB $\overline{}$ HG **RSVP** Proxy **VoD Server** RESV **RESV** RESV 200 OK **PLAY** 200 OK Streaming

Key Scenarios

- Those are the key Call Flows to achieve CAC for VoD:
 - Setup with successful Reservation
 - Session Termination by STB
 - Setup Failure due to Admission Control Rejection

Setup with Successful Reservation

Setup with Successful Reservation (using RSVP Reliable Messaging)

Session Termination by STB

Setup Failure due to Admission Control Rejection

Policy Server CAC for VoD

RTSP SETUP(url)

CAC for Multicast (Switched Broadcast)

(*) ip igmp limit <limit> [exclude <acl>] 12.2(15)T
(**) ip multicast limit out|rpf|connected <acl> <limit> 12.3(14)T

May use Policy Server in the future through Multicast AAA interface

© 2005, Cisco Systems, Inc. All rights reserved.

Service Specific Routing (Multi-VRF)

- Multi-VRF allows for multiple routing topologies separated by interfaces
- Each interface (VLAN, subinterface) can belong to only one topology
- One IGP session per topology

Redundancy models

• Dual streams (1+1 RTP sessions)

Let the receiver decide which one to take

• Heartbeat

Active sends periodic hello to standby (muted) source

Receiver driven

Same group with two sources. STB decides which one to join using IGMPv3

• Anycast-Source

Two (or more) sources actively sending with same origin IP address

Network decides which one to use using its metrics

Disaster-recovery and redundant headend applications

Anycast-Source with RIPv2 Poison Reverse

- The two sources are active and sending
- s/32 routes are generated by both source using RIPv2 updates
- Host routes for anycast source are redistributed into IGP with variable metrics (optional)
- Network selects source (PIM join messages) based on metric
- Upon video failure, sources withdraw s/32 routes using Poison Reverse (infinite metric) updates

Local content insertion with splicing

Q and A

CISCO SYSTEMS